Abstract and Introduction
Introduction
Previous infection with SARS-CoV-2, the virus that causes COVID-19, has been estimated to confer up to 90% protection against reinfection, although this protection was lower against the Omicron variant compared with that against other SARS-CoV-2 variants.[1–3] A test-negative design was used to estimate effectiveness of COVID-19 mRNA vaccines in preventing subsequent COVID-19–associated hospitalization among adults aged ≥18 years with a previous positive nucleic acid amplification test (NAAT) or diagnosis of COVID-19.† The analysis used data from Cosmos, an electronic health record (EHR)–aggregated data set,[4] and compared vaccination status of 3,761 case-patients (positive NAAT result associated with hospitalization) with 7,522 matched control-patients (negative NAAT result). After previous SARS-CoV-2 infection, estimated vaccine effectiveness (VE) against COVID-19–associated hospitalization was 47.5% (95% CI = 38.8%–54.9%) after 2 vaccine doses and 57.8% (95% CI = 32.1%–73.8%) after a booster dose during the Delta-predominant period (June 20–December 18, 2021), and 34.6% (95% CI = 25.5%–42.5%) after 2 doses and 67.6% (95% CI = 61.4%–72.8%) after a booster dose during the Omicron-predominant period (December 19, 2021–February 24, 2022). Vaccination provides protection against COVID-19–associated hospitalization among adults with previous SARS-CoV-2 infection, with the highest level of protection conferred by a booster dose. All eligible persons, including those with previous SARS-CoV-2 infection, should stay up to date with vaccination to prevent COVID-19–associated hospitalization.
Data were obtained from Cosmos,[4] an EHR data set that includes information from more than 135 million patients and 154 health care organizations in the United States.§ Patients eligible for inclusion in the analysis met the following four criteria: 1) age ≥18 years, 2) residence in the United States, 3) at least one hospital admission for a COVID-19–like illness,¶ with a hospitalization-associated NAAT performed from 10 days before through 3 days after admission during June 20, 2021–February 24, 2022, and 4) a previous positive NAAT result or diagnostic code of COVID-19 (with or without hospitalization) >90 days before the date of the NAAT associated with the subsequent hospitalization.** Patients under the billing category of "observation" and patients who were admitted and discharged on the same day were excluded. Vaccination status was categorized on the day of the NAAT associated with the hospitalization as 1) unvaccinated, 2) after dose 1, 3) after dose 2, or 4) after a booster dose††; patients were excluded if they did not meet one of these definitions or if the previous positive NAAT result or COVID-19 diagnosis was after the date of the most recent vaccine dose. Vaccination information was collected during the 14 days after hospitalization or other health care visit from a patient's health system, other health systems via clinical record exchanges, state registries, and patient-reported history.§§
VE was estimated using conditional logistic regression, comparing the vaccination status among case-patients and control-patients. VE after each vaccine dose was estimated using the unvaccinated group as a referent. For estimation of relative VE after a booster dose, the referent group had received dose 2 (but not a booster dose) ≥5 months previously. Eligible case-patients were matched with control-patients using a 1:2 ratio by 2-week period of the hospitalization-associated NAAT, 10-year age group, and state of residence. After matching, estimates were adjusted for sex, race/ethnicity, number of clinical encounters during 2019, number of underlying health conditions, and days since the previous infection.¶¶ The period June 20–December 18, 2021, was categorized as Delta-predominant, and the period December 19, 2021–February 24, 2022, as Omicron-predominant; periods were defined as range of dates when estimated national prevalence of a SARS-CoV-2 variant exceeded 50%.*** In a sensitivity analysis, VE was also estimated defining previous infection as a positive NAAT result. Wilcoxon rank-sum tests and chi-square tests were used to compare group medians and proportions, respectively; p-values <0.05 were considered statistically significant. Data were analyzed using R software (version 4.1.2; R Foundation). This activity was reviewed by CDC and was conducted consistent with applicable federal law and CDC policy.†††
Among 5,116,024 adults aged ≥18 years with an initial positive NAAT result or diagnosis of COVID-19, 51,609 patients were hospitalized with COVID-19–like illness associated with a NAAT result >90 days after the previous infection,§§§ including 5,048 (9.8%) with a positive NAAT result. Among these 5,048 case-patients, 2,436 (48.3%; median = 67 reinfections per week) were admitted during the Delta-predominant period, and 2,612 (51.7%; median = 343 reinfections per week) during the Omicron-predominant period (Supplementary Figure, https://stacks.cdc.gov/view/cdc/116026).
After 7,569 patients were excluded, 11,283 of 44,040 eligible patients were matched and included in the analysis, 3,761 (87.1%) of 4,319 eligible case-patients and 7,522 (18.9%) of 39,721 eligible control-patients. Case- and control-patients were demographically similar, with fewer underlying conditions and previous health care encounters among case-patients (Table 1). Overall, 61.2% of case-patients were unvaccinated, 4.3% had received 1 vaccine dose, 27.6% had received 2 doses, and 6.9% had received a booster dose, compared with 47.5%, 5.5%, 33.2%, and 13.9% of control-patients, respectively.
During the Delta-predominant period, estimated adjusted VE was 58.8% (95% CI = 41.3%–71.1%) after dose 1, 47.5% (95% CI = 38.8%–54.9%) after dose 2, and 57.8% (95% CI = 32.1%–73.8%) after a booster dose; during the Omicron-predominant period, adjusted VE was 33.0% (95% CI = 15.0%–47.2%) after dose 1, 34.6% (95% CI = 25.5%–42.5%) after dose 2, and 67.6% (95% CI = 61.4%–72.8%) after a booster dose (Table 2). VE estimates were similar whether hospitalizations were <90 days or ≥90 days after the most recent vaccine dose. Similar estimates were obtained in a sensitivity analysis that included 2,146 case-patients and 4,887 control-patients with previous infection confirmed by NAAT (Supplementary Table, https://stacks.cdc.gov/view/cdc/116025).
During the analysis period, among persons who had a previous positive NAAT result or COVID-19 diagnosis before the first vaccine dose, estimated VE was 43.1% (95% CI = 30.7%–53.2%) after dose 1, 41.7% (95% CI = 35.5%–47.3%) after dose 2, and 70.3% (95% CI = 64.1%–75.4%) after a booster dose (Table 3). Among persons whose initial infection occurred between dose 2 and a booster dose, VE after the booster dose was 50.0% (95% CI = 26.9%–65.8%). Estimated VE of a booster dose was similar among persons aged <65 years (67.7%; 95% CI = 57.7%–75.3%) and ≥65 years (64.5%; 95% CI 56.0%–71.4%). Relative VE of a booster dose compared with ≥5 months after dose 2 was 55.9% (95% CI = 43.6%–65.5%).
Morbidity and Mortality Weekly Report. 2022;71(15):549-555. © 2022 Centers for Disease Control and Prevention (CDC)