Which medications in the drug class Antibiotics are used in the treatment of Cholera?

Updated: Feb 03, 2021
  • Author: Sajeev Handa, MBBCh, BAO, LRCSI, LRCPI; Chief Editor: Russell W Steele, MD  more...
  • Print
Answer

Antibiotics

Empiric antimicrobial therapy must be comprehensive and should cover all likely pathogens in the context of the clinical setting. Although not necessarily curative, treatment with an antibiotic to which the organism is susceptible diminishes the duration and volume of the fluid loss and hastens clearance of the organism from stool. Pharmacotherapy plays a secondary role in the management of cholera; fluid replacement is primary.

Emerging drug resistance in certain parts of the world is a concern, as some V cholerae strains contain plasmids that confer resistance to many antibiotics. In areas of known tetracycline resistance, therapeutic options include ciprofloxacin and erythromycin. Strains resistant to ciprofloxacin have been reported from Calcutta, India.

Chemoprophylaxis of household contacts is not necessary.

Doxycycline (Adoxa, Vibramycin, Doxy)

Doxycycline inhibits protein synthesis and, thus, bacterial growth by binding to 30S and possibly 50S ribosomal subunits of susceptible bacteria.

Tetracycline

Tetracycline inhibits bacterial protein synthesis by binding with 30S and possibly 50S ribosomal subunit(s). This agent treats gram-positive and gram-negative organisms and mycoplasmal, chlamydial, and rickettsial infections.

Trimethoprim and sulfamethoxazole (Bactrim DS, Septra DS)

This combination agent inhibits bacterial growth by inhibiting synthesis of dihydrofolic acid.

Trimethoprim is a dihydrofolate reductase inhibitor that prevents tetrahydrofolic acid production in bacteria. It is active in vitro against a broad range of gram-positive and gram-negative bacteria, including uropathogens (eg, Enterobacteriaceae and Staphylococcus saprophyticus). Resistance is usually mediated by decreased cell permeability or alterations in amount or structure of dihydrofolate reductase. It demonstrates synergy with sulfonamides, potentiating inhibition of bacterial tetrahydrofolate production.

Ciprofloxacin (Cipro, Proquin XR)

Ciprofloxacin is a fluoroquinolone with activity against pseudomonads, streptococci, methicillin-resistant Staphylococcus aureus (MRSA), S epidermidis, and most gram-negative organisms. It does not have activity against anaerobes. This agent inhibits bacterial DNA synthesis and, consequently, growth.

Ampicillin

Ampicillin has bactericidal activity against susceptible organisms.

Erythromycin (E.E.S., Erythrocin, Ery-Tab)

Erythromycin inhibits bacterial growth, possibly by blocking dissociation of peptidyl transfer RNA (tRNA) from ribosomes, causing RNA-dependent protein synthesis to arrest. Erythromycin is used for treatment of staphylococcal and streptococcal infections. In children, age, weight, and severity of infection determine proper dose. When twice-daily dosing is desired, half the total daily dose may be taken q12h. For more severe infections, double the dose.

Azithromycin (Zithromax, Zmax)

This agent acts by binding to the 50S ribosomal subunit of susceptible microorganisms and blocks dissociation of peptidyl tRNA from ribosomes, causing RNA-dependent protein synthesis to arrest. Nucleic acid synthesis is not affected.

It concentrates in phagocytes and fibroblasts, as demonstrated by in vitro incubation techniques. In vivo studies suggest that concentration in phagocytes may contribute to drug distribution to inflamed tissues. This agent is used to treat mild-to-moderate microbial infections.

Norfloxacin (Noroxin)

Norfloxacin is a fluoroquinolone with activity against pseudomonads, streptococci, MRSA, S epidermidis, and most gram-negative organisms. It does not have activity against anaerobes. It inhibits bacterial DNA synthesis and growth.


Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!