How does screening and early detection of ovarian cancer affect mortality rates?

Updated: Aug 10, 2020
  • Author: Andrew E Green, MD; Chief Editor: Yukio Sonoda, MD  more...
  • Print
Answer

Ovarian cancer does not lend itself to screening because it has a relatively low prevalence within the general population and no proven precursor lesion exists that can be detected and treated to prevent the cancer from occurring. No approved screening method is available for ovarian cancer.

The U.S. Preventive Services Task Force (USPSTF) recommends against screening for ovarian cancer in the general population. The USPSTF found fair evidence that although screening with serum CA-125 level or transvaginal ultrasonography can detect ovarian cancer at an earlier stage, earlier detection is likely to have a small effect, at best, on mortality from ovarian cancer. In addition, because of the low prevalence of ovarian cancer and the invasive nature of diagnostic testing, the USPSTF concluded that the potential harms outweigh the potential benefits. [3]

A randomized trial in a US population found that simultaneous screening with ultrasonography and CA-125 did not reduce ovarian cancer mortality, and evaluation of false-positive results was associated with complications. [48]

The US Food & Drug Administration (FDA) recommends against the use of tests marketed for ovarian cancer screening. [4] The National Cancer Institute (NCI) cites evidence of lack of mortality benefit with screening, and potential harms relating to false-positive test results. [5]

Studies are trying to improve the accuracy of screening for early-stage ovarian cancer. Most are targeting perimenopausal or postmenopausal women or those with a family history of epithelial ovarian cancer. Many studies are using a combination of ultrasound, serum CA125 testing, and other tumor markers. Large prospective trials include the United Kingdom Collaborative Trial of Ovarian Cancer Screening, a European trial of ovarian cancer screening in 202,638 women; and the National Institutes of Health Prostatic, Lung, Colorectal and Ovarian (NIH-PLCO) cancer study. The primary outcome measure of the latter study is mortality from ovarian and fallopian tube cancer on 10-year follow-up.

Primary analysis of data from the United Kingdom Collaborative Trial of Ovarian Cancer Screening found no significant difference in ovarian cancer mortality in women who underwent annual multimodal screening (MMS) with serum CA-125 interpreted with use of the risk of ovarian cancer algorithm, annual transvaginal ultrasound, or no screening. When prevalent cases were excluded, however, a significant mortality reduction with MMS was noted, with evidence of a mortality reduction in years 7-14. The authors conclude that "further follow-up is needed before firm conclusions can be reached on the efficacy and cost-effectiveness of ovarian cancer screening." [52]

Considerable interest has developed in the characterization of computer-analyzed protein patterns in the blood as a way of improving screening for ovarian cancer. Such methods are currently undergoing intensive research and clinical validation, and they may hold hope for the future.

Lachance et al tested a nomogram for estimating the probability of ovarian cancer. The model had a sensitivity of 90% and a specificity of 73%, which may provide a further tool to aid in ensuring referral. [53]

In a study by van Nagell et al, asymptomatic women who underwent annual sonographic screening achieved increased detection of early stage ovarian cancer, with an increase in 5-year disease-specific survival. [54]


Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!