What is the role of free thyroxine in the pathophysiology of euthyroid sick syndrome?

Updated: Aug 28, 2020
  • Author: Serhat Aytug, MD; Chief Editor: Romesh Khardori, MD, PhD, FACP  more...
  • Print

Evaluating thyroid function in patients with NTI has considerable challenges. No consensus exists as to whether free T4 levels are within the reference range, low, or high. Free T4 is believed to represent the hormone available to tissues. Measurement of total serum T4 has only limited value because nearly all (99.97%) of the circulating T4 is bound to TBG, T4-binding prealbumin (TBPA), and albumin. The rest of the circulating T4 (0.2-0.03%) is free T4. The circulating concentration of these binding proteins is understood to affect the total T4 concentration without necessarily changing the amount of free T4. Usually, TBG levels are within the reference range in patients with NTI and somewhat lower in critically ill patients with low serum T4. Decreased concentrations of one or more of the binding proteins would explain low levels of total T4 but does not explain a significant increase in free T4 fraction, which some patients with NTI exhibit.

Various explanations for the existence of inhibitors of T4 binding have been reported. Although low levels of TBPA and albumin may occur in patients with NTI, even complete inhibition of T4 binding to these proteins has been demonstrated to produce only about a 30% increase in free T4 fraction. Because free T4 fraction is increased above this level in many patients, other factors must be present. The observations of reduced total T4 and free T4 have been explained alternatively as either a fall in TBG levels or an inhibition of thyroid hormone binding to TBG. Some studies have shown a decrease in the T4 binding of TBG, which has been used as an explanation for the low plasma T4 concentration and, perhaps, the high free T4 fractions, in patients with NTI. Other studies postulate the existence of a binding inhibitor that could explain the observed alterations in free T4 fraction.

The inhibitor also has been demonstrated to interfere with the binding of iodothyronines to solid matrices, thus interfering with the T3 resin uptake and explaining the low FTI found in patients with NTI. The inhibitor appears to be extractable with ether and was associated with the NEFA fraction in the serum. Furthermore, the extracted inhibitor from sera of patients with NTI reduced conversion of T4 to T3 in rat liver homogenates. The inhibitor could be extracted from extrathyroidal tissues as well.

The addition of NEFA to normal serum is able to raise the free T4 fraction only if total NEFA concentration is higher than 3 millimoles in normal serum, representing a NEFA-to-albumin molar ratio greater than 5:1. Because this high NEFA-to-albumin ratio is not reached even in severely ill patients, NEFA is unlikely to influence the circulating free T4 concentration in vivo. Inhibitors of binding were also observed during equilibrium dialysis assay in patients treated with heparin. This is due to an in vitro artifact that is not present in vivo.

Cytokines also can elevate free T4. When TNF-alpha was infused, it was observed that free T4 could elevate transiently in association with a significant rise in free fatty acids. However, other studies question the role of NEFA inhibition or whether any thyroid hormone–binding inhibitor exists at all.

Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!