What is the role of EMG in the workup of Kennedy disease (KD)?

Updated: Sep 30, 2019
  • Author: Paul E Barkhaus, MD, FAAN, FAANEM; Chief Editor: Nicholas Lorenzo, MD, MHA, CPE  more...
  • Print

Other tests may not be needed if the results of genetic testing are positive.

Other tests may include electrodiagnostic studies. [70, 55]

  • Somatosensory evoked potentials: The potentials may be abnormal, reflecting dysfunction in the pathways of the posterior column.

  • Nerve conductions: Compound muscle action potentials have normal or reduced amplitude. Sensory conductions show normal, reduced, or absent sensory-nerve action potentials.

Needle-electrode examination may be needed. A full discussion of electrodiagnostic approaches to motor neuropathy is beyond the scope of this article. In a slowly progressive disease such as KD, fibrillation potentials may be relatively infrequent and small in amplitude. Other insertional and spontaneous activities, such as complex repetitive discharges, myokymia, and fasciculation potentials, also vary in prominence. When clinical myokymia is present, spontaneous discharges of grouped motor-unit action potentials (MUAPs) may be recorded. When present in the mentalis muscle they may correspond to the clinical observation of the quivering chin when the patient is at rest.

Needle-electrode examination should reveal a diffuse, chronic neurogenic process based on changes in the MUAPs, such as complexity, increased amplitude and duration, and reduced recruitment rate. Muscles are affected unequally (side-to-side asymmetry, proximal vs distal muscle).

The study should be planned to demonstrate multisegmental involvement of muscles (myotomes) in at least 3 of 4 regions (ie, bulbar, cervical, thoracic, or lumbar), similar to the El Escorial criteria [58] used to support the diagnosis of ALS. In the limbs, 2 muscles supplied by 2 different roots and peripheral nerves should be studied to ascertain the presence of a diffuse chronic neurogenic process. In KD examination of the bulbar region should be emphasized.

Increase in MUAP complexity (eg, increase in phases, turns, or the presence of late components or satellites) is a nonspecific finding and may be seen as an early abnormal finding in neurogenic or myopathic processes.

If the process is established and weakness is present, a reduced number of moderately to markedly enlarged MUAPs may be observed. This finding is expected in a slowly progressive, chronic neurogenic process in which one third to half the motor neurons in a given muscle may be lost before clinical weakness manifests (see images below).

Motor-unit action potentials recorded from the bic Motor-unit action potentials recorded from the biceps brachii in a patient with Kennedy disease. Upper tracing shows 2 action potentials discharging during low-to-moderate effort. In a healthy person, additional discharges are expected. (Calibration is 1 mV per division on the vertical axis and 10 ms per division on the horizontal axis.) Potential on the left is approximately 1.2 mV and 26 ms. It is moderately increased in amplitude, almost twice the upper limit in duration, and shows marked irregularity or serrations (ie, turns) in the main component. Potential to the right is markedly increased in amplitude (approximately 3.3 mV), and its duration is at least 30 ms but cannot be measured on this tracing because it extends off to the right and qualifies as a giant motor-unit action potential. Bottom tracing shows the same 2 potentials at standard setting used to view motor-unit action potentials (0.1 mV per vertical division), which emphasizes their large size and complexity (ie, increased number of changes in polarity of the waveform).
Recording of motor-unit action potentials from the Recording of motor-unit action potentials from the pectoralis muscle in a patient with Kennedy disease. Calibration is 1 mV per division on the vertical axis and 10 ms per division on the horizontal axis. The patient's level of effort in activation is high. Therefore, the number of motor unit action potentials clearly is reduced, and the individual potentials observed are enlarged, consistent with a chronic neurogenic process.

Meriggioli and Rowin reported a case of KD with increased jitter on single-fiber EMG in a patient with KD who had fatigue with normal muscle strength on clinical evaluation. [71] Routine needle-electrode examination showed evidence of chronic motor axonopathy or neuronopathy. The authors postulated that abnormal neuromuscular transmission was the underlying mechanism of the patient's fatigue.

Fiber-optic endoscopic evaluation or swallow study is recommended for dysphagia as 80% of KD patients have swallowing dysfunction [72]

Tongue pressure is decreased in KD. It has shown to be an early and reliable biomarker of swallowing dysfunction in KD, much before subjective dysphagia symptoms. [73]

Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!