What is the role of muscle sodium channel gene in the pathophysiology of periodic paralyses (PP)?

Updated: Apr 30, 2018
  • Author: Naganand Sripathi, MD; Chief Editor: Nicholas Lorenzo, MD, MHA, CPE  more...
  • Print
Answer

The sodium channel has an alpha subunit and a beta subunit. The alpha subunit of the sodium channel is a 260-kd glycoprotein comprising about 1800-2000 amino acids. This channel is highly conserved evolutionarily from Drosophila to human. It has 4 homologous domains (I-IV) that fold to form a central pore, each with 225-325 amino acids. Each domain consists of 6 hydrophobic segments (S1-S6) traversing the cell membrane. The main functions of the channel include voltage-sensitive gating, inactivation, and ion selectivity. The extracellular loop between S5 and S6 dips into the plasma membrane and participates in the formation of the pore. The S4 segment contains positively charged amino acids at every third position and functions as a voltage sensor. Conformation changes may occur during depolarization, resulting in activation and inactivation of the channel. The cellular loop between domain III-S6 and domain IV-S1 acts as an inactivating gate.

The sodium channel has 2 gates (activation and inactivation) and can exist in 3 states. At rest with the membrane polarized, the activation gate is closed and the inactivation gate is opened. With depolarization, the activation gate opens, allowing sodium ions to pass through the ion channel and also exposing a docking site for the inactivation gate. With continued depolarization, the inactivation gate closes, blocking the entry of sodium into the cell and causing the channel to enter the fast-inactivation state. This inactivation of the channel allows the membrane to become repolarized, resulting in a return to the resting state with the activation gate closed and the inactivation gate opened. Two inactivation processes occur in mammalian skeletal muscle: Fast inactivation involves terminating the action potential and acts on a millisecond time scale. Slow inactivation takes seconds to minutes and can regulate the population of excitable sodium channels.

Sodium channel mutations that disrupt fast and slow inactivation are usually associated with a phenotype of HyperPP and myotonia, where as mutations that enhance slow or fast inactivation producing loss of sodium channel function cause HypoPP.

Mutations of the sodium channel gene (SCN4A) have several general features. Most of the mutations are in the "inactivating" linker between repeats III and IV, in the "voltage-sensing" segment S4 of repeat IV or at the inner membrane where they could impair the docking site for the inactivation gate. The clinical phenotype differs by specific amino acid substitution and, while some overlap may occur between hyperkalemic PP, paramyotonia congenita (PC), and potassium-aggravated myotonias (PAM), the 3 phenotypes are generally distinct (as described below). Nearly all mutant channels have impaired fast-inactivation of sodium current. Most patients are sensitive to systemic potassium or to cold temperature.

Two populations of channels exist, mutant and wild-type; the impaired fast-inactivation results in prolonged depolarization of the mutant muscle fiber membranes and can explain the 2 cardinal symptoms of these disorders, myotonia and weakness. In hyperkalemic PP, a gain of function occurs in mutant channel gating, resulting in an increased sodium current excessively depolarizing the affected muscle. Mild depolarization (5-10 mV) of the myofiber membrane, which may be caused by increased extracellular potassium concentrations, results in the mutant channels being maintained in the noninactivated mode. The persistent inward sodium current causes repetitive firing of the wild-type sodium channels, which is perceived as stiffness (ie, myotonia).


Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!