What is the role of MRI in the workup of hemorrhagic stroke?

Updated: Dec 09, 2020
  • Author: Souvik Sen, MD, MPH, MS, FAHA; Chief Editor: Helmi L Lutsep, MD  more...
  • Print


GRE and EPI sequences have the ability to detect microbleeds that are clinically silent and not visualized by computed tomography (CT) scanning or routine MRI sequences. These microbleeds are visualized in a fifth to a quarter of patients with ischemic stroke and 5% of elderly asymptomatic individuals. The microbleeds depict hemosiderin deposit and have been histopathologically correlated with prior extravasations of blood. These microbleeds may represent bleeding-prone angiopathy and a higher rate of hemorrhagic transformation from anticoagulation, antithrombotic, and thrombolytic therapy. [15]

GRE, EPI, and DWI (B0) are sensitive in detecting intraparenchymal hemorrhage (primary intracerebral hemorrhage and hemorrhagic transformation) in the hyperacute stages (first few hours), whereas the conventional T1-WI and T2-WI are sensitive in detecting subacute and chronic bleeding. FLAIR sequences may have a role in detecting extra-axial collections of blood (subdural hemorrhages). However, the current guidelines do not advocate the use of MRI in place of CT scanning to screen patients for thrombolysis.

Go to Hemorrhagic Stroke for more complete information on this topic.

Did this answer your question?
Additional feedback? (Optional)
Thank you for your feedback!